$\renewcommand{\hat}[1]{\widehat{#1}}$
Redner, Gabriel S., Aparna Baskaran, and Michael F. Hagan. "Reentrant phase behavior in active colloids with attraction." Physical Review E 88.1 (2013): 012305.
Redner, Gabriel S., Aparna Baskaran, and Michael F. Hagan. "Reentrant phase behavior in active colloids with attraction." Physical Review E 88.1 (2013): 012305.
Redner, Gabriel S., Aparna Baskaran, and Michael F. Hagan. "Reentrant phase behavior in active colloids with attraction." Physical Review E 88.1 (2013): 012305.
Redner, Gabriel S., Aparna Baskaran, and Michael F. Hagan. "Reentrant phase behavior in active colloids with attraction." Physical Review E 88.1 (2013): 012305.
Note that the equations of motion are nondimensionalized using time as $\tau = \sigma^{2}/D$, where $\sigma$ and $k_{B}T$ as basic units of length and energy.
$$\dot{r}_{i}=\text { Force }+\text { propulsion velocity w/ stochastic orientation}+\text { stochastic viscosity (Gaussian white noise) }$$$$\dot{\boldsymbol{r}}_{i}=\frac{1}{\gamma} \boldsymbol{F}_{\mathrm{LJ}}\left(\left\{\boldsymbol{r}_{i}\right\}\right)+v_{\mathrm{p}} \hat{\boldsymbol{v}}_{i}+\sqrt{2 D} \boldsymbol{\eta}_{i}^{\mathrm{T}},\label{eq:1}\tag{1}$$where $\eta$ is Gaussian white noise with $\left\langle\eta_{i}(t)\right\rangle= 0$ and $\left\langle\eta_{i}(t)\eta_{j}\left(t^{\prime}\right)\right\rangle=\delta_{i j} \delta\left(t-t^{\prime}\right)$. The magnitude of self-propulsion velocity is $v_{\mathrm{p}}$ and the direction of propulsion depends on the particles orientation, $\hat{v}_{i}=\left(\cos \theta_{i}, \sin \theta_{i}\right)$.
The angles associated with $\hat{v}_{i}$ are given by
$$\hat{\theta}=\sqrt{2 \mathcal{D}_{r}} \eta_{i}^{R},$$where the the rotational diffusion constant, $D_{r}$ goes to $D_{r} = 3D/\sigma^{2}$ at a low Reynolds number.
Lastly, the last term in equation $\ref{eq:1}$ directly relates to the stokes drag coefficient:
$$D=\frac{k_{\mathrm{B}} T}{\gamma}$$Quantity | Symbol | Relation to SI | Type |
---|---|---|---|
Mass | $m*$ | $m* = m M^{-1}$ | float |
Positions | $r*$ | $x*=x\sigma^{-1}$ | np.array |
Velocities | $v*$ | $$v* = v M^{1/2}\sigma^{-1/2}$$ | np.array |
Energy | $E*$ | $E* = E \epsilon^{-1}$ | float |
Temperature | $T*$ | $T* = T k_{B}\epsilon^{-1}$ | float |
Forces | $F*$ | $F* = F \sigma \epsilon^{-1}$ | np.array |
time | $t*$ | $t* = t\sigma^{-1} (\epsilon M^{-1})^1/2$ | float |
Pressure | $P*$ | $P* = P \sigma^{dim=2} \epsilon^{-1}$ | float |
Density | $\rho*$ | $\rho* = \rho \sigma^{dim=2}$ | float |
Dynamic viscosity | $\eta*$ | $\eta* = N \sigma^{3} V^{-1}$ | float |
import MD
NSTEPS = 1000
row_col = [6,3] #row_col = [12,4]
lattice_spacing=[0.7,1.75] # if hex
#lattice_spacing=[1.42,1.42] # if bcc
sim = MD.Simulation(nSteps=NSTEPS, row_col=row_col, lattice="hex", #"bcc""hex",
lattice_spacing=lattice_spacing,
print_frequency=100, dt=0.005, v_initial=2.5, temp=1.65,
write_frequency=NSTEPS, store_frequency=10,traj_format="lammps")#"lammps")
# Verlet Algorithm
sim.integrate()
# of Particles = 18 BOX DIMENSIONS = (3.9,5.175) Lattice Spacing in x,y = 0.7,1.75 NUMBER OF PARTICLES = 18 Step # Time,t Temperature,T Pair Potential, U Total Energy, E Pressure, P 0 0.0000e+00 2.3293e+00 -2.6127e+02 -2.1935e+02 1.7261e+01 100 5.0000e-01 1.6461e+00 -2.6487e+01 3.1434e+00 6.6572e+00 200 1.0000e+00 1.4135e+00 -2.7812e+01 -2.3697e+00 5.5473e+00 300 1.5000e+00 1.4940e+00 -2.8858e+01 -1.9652e+00 5.9910e+00 400 2.0000e+00 1.4891e+00 -2.8668e+01 -1.8651e+00 5.9415e+00 500 2.5000e+00 1.6089e+00 -2.8244e+01 7.1577e-01 6.4969e+00 600 3.0000e+00 1.8153e+00 -2.8245e+01 4.4313e+00 7.4903e+00 700 3.5000e+00 1.5370e+00 -2.8695e+01 -1.0297e+00 6.1754e+00 800 4.0000e+00 1.4835e+00 -2.8929e+01 -2.2262e+00 5.9221e+00 900 4.5000e+00 1.8027e+00 -2.9194e+01 3.2544e+00 7.4737e+00 Writing Trajectory: traj_0.lammps