Steps Towards Modeling Active Particles

Reviewing: Reentrant phase behavior in active colloids with attraction

May 6th, 2019

by Robert M. Raddi

$\renewcommand{\hat}[1]{\widehat{#1}}$

Outline

I. Discuss the main Ideas from Reentrant phase behavior in active colloids with attraction

II. Steps

- Create a basic 2-D LJ liquid simulation using velocity-Verlet algorithm and compare with Lammps

III. Prospective steps:

- Modify the 2-D LJ liquid simulation to match the paper.
- Does this model give us the full story?

IV. Conclusion

Motivation

Active particles

- Study active particles a new hot topic in liquids.
- Active fluids generally contain self-propelled particles that interact, individually endergonic, but as a collection generate large scale motion. [1]

At Low Reynolds Number: Self-propulsion (examples)

- Self-propelled colloids, bacteria, cells, algae and other micro-organisms.

Is it possible to uncover the dynamics of activity and interparticle attraction?





[1] Arvind Gopinath, Michael F. Hagan, M. Cristina Marchetti, and Aparna Baskaran Phys. Rev. E 85, 061903 – Published 1 June 2012

Reentrant phase behavior in active colloids with attraction

Redner, Gabriel S., Aparna Baskaran, and Michael F. Hagan. "Reentrant phase behavior in active colloids with attraction." Physical Review E 88.1 (2013): 012305.

DOI: 10.1103/PhysRevE.88.012305; Supplemental Information

$$ U = \frac{\epsilon}{k_{B}T} \hspace{0.5cm};\hspace{0.5cm} P_{e} = v_{P} \frac{\tau}{\sigma} $$

Stochastic Orientation of particles due to $\hat{\boldsymbol{v}}_{i} = (cos\theta_{i},sin\theta_{i})$

• High density phase $\rightarrow$ Low density phase: Modeled by an escape cone on the interface

Redner, Gabriel S., Aparna Baskaran, and Michael F. Hagan. "Reentrant phase behavior in active colloids with attraction." Physical Review E 88.1 (2013): 012305.

Interparticle attraction strength, U = 4

Propulsion Strength, $P_{e}$ = 4

Attractive interactions dominate and phase separation between gel and gas phase. As $t \rightarrow \infty$, gel $\rightarrow$ single cluster.

Redner, Gabriel S., Aparna Baskaran, and Michael F. Hagan. "Reentrant phase behavior in active colloids with attraction." Physical Review E 88.1 (2013): 012305.

Interparticle attraction strength, U = 4

Propulsion Strength, $P_{e}$ = 20

Activity is increased, which results in a single-phase (homogenous liquid).

Redner, Gabriel S., Aparna Baskaran, and Michael F. Hagan. "Reentrant phase behavior in active colloids with attraction." Physical Review E 88.1 (2013): 012305.

Interparticle attraction strength, U = 4

Propulsion Strength, $P_{e}$ = 100

Activity is increased further, which results in self-trapping that drives the system to phase separate again. Many initial clusters $\rightarrow$ single cluster.

Redner, Gabriel S., Aparna Baskaran, and Michael F. Hagan. "Reentrant phase behavior in active colloids with attraction." Physical Review E 88.1 (2013): 012305.

Brownian Motion

Coupled Overdamped Langevin Equations

Note that the equations of motion are nondimensionalized using time as $\tau = \sigma^{2}/D$, where $\sigma$ and $k_{B}T$ as basic units of length and energy.

$$\dot{r}_{i}=\text { Force }+\text { propulsion velocity w/ stochastic orientation}+\text { stochastic viscosity (Gaussian white noise) }$$$$\dot{\boldsymbol{r}}_{i}=\frac{1}{\gamma} \boldsymbol{F}_{\mathrm{LJ}}\left(\left\{\boldsymbol{r}_{i}\right\}\right)+v_{\mathrm{p}} \hat{\boldsymbol{v}}_{i}+\sqrt{2 D} \boldsymbol{\eta}_{i}^{\mathrm{T}},\label{eq:1}\tag{1}$$

where $\eta$ is Gaussian white noise with $\left\langle\eta_{i}(t)\right\rangle= 0$ and $\left\langle\eta_{i}(t)\eta_{j}\left(t^{\prime}\right)\right\rangle=\delta_{i j} \delta\left(t-t^{\prime}\right)$. The magnitude of self-propulsion velocity is $v_{\mathrm{p}}$ and the direction of propulsion depends on the particles orientation, $\hat{v}_{i}=\left(\cos \theta_{i}, \sin \theta_{i}\right)$.

The angles associated with $\hat{v}_{i}$ are given by

$$\hat{\theta}=\sqrt{2 \mathcal{D}_{r}} \eta_{i}^{R},$$

where the the rotational diffusion constant, $D_{r}$ goes to $D_{r} = 3D/\sigma^{2}$ at a low Reynolds number.

Lastly, the last term in equation $\ref{eq:1}$ directly relates to the stokes drag coefficient:

$$D=\frac{k_{\mathrm{B}} T}{\gamma}$$

Goals:

I. Write molecular simulation code from scratch.
II. Reproduce the MD simulations from the following paper by altering the existing MD code.

Table 1. Reduced Lennard-Jones Units:

Quantity Symbol Relation to SI Type
Mass $m*$ $m* = m M^{-1}$ float
Positions $r*$ $x*=x\sigma^{-1}$ np.array
Velocities $v*$ $$v* = v M^{1/2}\sigma^{-1/2}$$ np.array
Energy $E*$ $E* = E \epsilon^{-1}$ float
Temperature $T*$ $T* = T k_{B}\epsilon^{-1}$ float
Forces $F*$ $F* = F \sigma \epsilon^{-1}$ np.array
time $t*$ $t* = t\sigma^{-1} (\epsilon M^{-1})^1/2$ float
Pressure $P*$ $P* = P \sigma^{dim=2} \epsilon^{-1}$ float
Density $\rho*$ $\rho* = \rho \sigma^{dim=2}$ float
Dynamic viscosity $\eta*$ $\eta* = N \sigma^{3} V^{-1}$ float

2-D Molecular Dynamics Simulation w/ LJ Potential

1. Initialize positions & velocities, setting t=0.

$$r_{x,y} = \left( \begin{array}{c}{r_{x1} \hspace{0.25cm} r_{y1}} \\ {r_{x2} \hspace{0.25cm} r_{y2}} \\ { \vdots}\hspace{0.25cm}{ \vdots} \\ {r_{\mathrm{xN}} \hspace{0.25cm} r_{\mathrm{yN}}}\end{array}\right) \hspace{0.35cm};\hspace{0.35cm} v_{x,y} = \left( \begin{array}{c}{v_{x1} \hspace{0.25cm} v_{y1}} \\ {v_{x2} \hspace{0.25cm} v_{y2}} \\ { \vdots}\hspace{0.25cm}{ \vdots} \\ {v_{\mathrm{xN}} \hspace{0.25cm} v_{\mathrm{yN}}}\end{array}\right) $$

Determine the kinetic energy

$$E_{\mathrm{kinetic}} = \left\langle\frac{1}{2} m v^{2}\right\rangle$$

Measure the temperature

$$T = \frac{1}{(2 N k_{B})}\sum_{i=1}^{N}{m {v_{i}}^{2}}$$

Berendsen Thermostat

$$v_{x,y} = v_{x,y}*\left[1+\frac{\nu \Delta t}{\tau_{T}}\left\{\frac{T_{0}}{T\left(t-\frac{1}{2} \Delta t\right)}-1\right\}\right]^{1 / 2}$$

Scale the velocities by the desired temperature

$$v(t) = v(t)\sqrt{\frac{SetTemp}{T}}$$

2. Compute the forces on all particles

Loop over all pairs and compute the forces

$$ r_{ij} = \sum_{i=1}^{N}\sum_{j=1\\j\neq i}^{N} |r_{i} - r_{j}|$$
Pair potential (Lennard-Jones)
$$ U_{LJ}(r) = 4\epsilon[(\frac{\sigma}{r})^{12} - (\frac{\sigma}{r})^{6}],$$
Force in the x and y directions
$$F_{x} = - (\frac{dU(r)}{dr}) = - (\frac{x}{r})(\frac{dU(r)}{dr}); F_{y} = - (\frac{dU(r)}{dr}) = - (\frac{y}{r})(\frac{dU(r)}{dr})$$




Fu, S-P., et al. "Lennard-Jones type pair-potential method for coarse-grained lipid bilayer membrane simulations in LAMMPS." Computer Physics Communications 210 (2017): 193-203.

3. Integrate Newton's laws

Velocity Verlet Algorithm:
$$r(t+\Delta t)=r(t)+v(t) \Delta t+\frac{F_{LJ}(t)}{2 m} \Delta t^{2}$$$$r_{i}(t+\Delta t) = r_{i}(t) + v_{i}(t) + (a(t)/2) \Delta t^2 $$$$a(t+\Delta t) = F_{LJ}(r(t+\Delta t))/m$$$$v(t+\Delta t) = v(t) + 0.5 (a(t+\Delta t)+a(t))\Delta t $$
Apply periodic boundary conditions (PBC)
Update $t$ to $t+\Delta t$
In [7]:
import MD
NSTEPS = 1000
row_col = [6,3] #row_col = [12,4] 
lattice_spacing=[0.7,1.75]  # if hex
#lattice_spacing=[1.42,1.42]   # if bcc
sim = MD.Simulation(nSteps=NSTEPS, row_col=row_col, lattice="hex",  #"bcc""hex",
        lattice_spacing=lattice_spacing,
        print_frequency=100, dt=0.005, v_initial=2.5, temp=1.65,
        write_frequency=NSTEPS, store_frequency=10,traj_format="lammps")#"lammps")
# Verlet Algorithm
sim.integrate()
# of Particles = 18
BOX DIMENSIONS = (3.9,5.175)
Lattice Spacing in x,y = 0.7,1.75
NUMBER OF PARTICLES = 18

Step #	Time,t 		Temperature,T 		Pair Potential, U	Total Energy, E		Pressure, P
0	0.0000e+00	2.3293e+00		-2.6127e+02		-2.1935e+02		1.7261e+01	
100	5.0000e-01	1.6461e+00		-2.6487e+01		3.1434e+00		6.6572e+00	
200	1.0000e+00	1.4135e+00		-2.7812e+01		-2.3697e+00		5.5473e+00	
300	1.5000e+00	1.4940e+00		-2.8858e+01		-1.9652e+00		5.9910e+00	
400	2.0000e+00	1.4891e+00		-2.8668e+01		-1.8651e+00		5.9415e+00	
500	2.5000e+00	1.6089e+00		-2.8244e+01		7.1577e-01		6.4969e+00	
600	3.0000e+00	1.8153e+00		-2.8245e+01		4.4313e+00		7.4903e+00	
700	3.5000e+00	1.5370e+00		-2.8695e+01		-1.0297e+00		6.1754e+00	
800	4.0000e+00	1.4835e+00		-2.8929e+01		-2.2262e+00		5.9221e+00	
900	4.5000e+00	1.8027e+00		-2.9194e+01		3.2544e+00		7.4737e+00	

Writing Trajectory: traj_0.lammps

5000 steps; step size of 5; with a total of 441 particles

Conclusion:

Simulation code written from scratch using only vectors

Qualitatively: matches with Lammps (interactions, 6 nearest neighbors, pair potential)

Prospective Goals:

Rewrite Python program in C++
Extend the basic MD simulation module to contain Brownian dynamics to study active particles