
 Fig. 1. Schematic representations of
 free energy crossections of two elec-
 tronic states: (A) zero-order presen-
 tation without mixing, followed in
 nonadiabatic reactions; and (B) pre-

 . . ,* . .

 sentatlon ot elgenstates atter mlxmg,
 followed in adiabatic reactions.

 Fig. 2. Schematic, one-dimensional
 representation of free energy sur-
 faces relevant in nonadiabatic elec-
 tron transfer reactions for (A) ther-
 mally neutral reactions; (B) the spe-
 cial case where -/vG° = As; and (C)
 highly exoergic reactions with
 IAMl)lAsl-

 / the resonance energy associated with the structures of reactant and
 / product zero-order wave functions at the curve-crossing point if the
 / motions of all the nuclei were frozen (20). To make a connection

 with Eq. 3, V is contained in the preexponentional factor A. The
 second term in Eq. 5 is not as straightforward. By necessity,

 > however, it must account for the exponential dependence associated
 / with the activation energy and temperature of Eq. 3. The theory we

 / use here is based on Marcus' classical papers (21, 22) and was further
 / developed in the 1970s by several authors (19-25). Although the

 2v model outlined here is not the most sophisticated, it does yield a
 - physically understandable picture.

 > Some of the key parameters are introduced in Fig. 2. Figure 2A
 represents a schematic, one-dimensional picture of an ET reaction,
 say of type (2). The potential curves represent the equilibrium free
 energies of the reactant and product states for a thermally neutral

 / reaction as function of solvent coordinates. In this representation
 / the reaction coordinate is the reorganization of the solvent, which is

 assumed to change its coordinates in a continuous fashion along the
 Gt coordinate. If the electron moved from donor to acceptor without

 rearranging the solvation shell, an energy As, the solvent reorganiza-
 > tion energy, would be necessary to move the system from curve 1 to

 alrve 2. However, iere is an energetically less expensive pathway to
 get from curve 1 to curve 2 involving thermal activation of the solvent
 molecules to a configuration where the free energy of the ion is

 s ° unchanged regardless of whether the electron is on the donor or the
 acceptor. As Marcus recognized 30 years ago, that is the pathway the
 system will take. For isoenergetic parabolic potential curves, the energy
 of this point is As/4. In terms of the Arrhenius equation or TST, this is

 Gt ie activated state or transition state. In Fig. 2B we have singled out a
 aG° reaction in which the free energy change equals As. In this case the

 activation energy vanishes altogether. Finally, Fig. 2C shows the case
 > in which the free energy change is even greater than the solvent

 reorgani7>i10n energy, causing the activation energy to reappear.
 Within ie approximation of parabolic potential curves, the free energy
 of activation is easily calculated by analytical geometry and shows a

 ction quadratic dependence on AG° and As, given by Eq. 6. The associated
 time rate constant is shown in Eq. 7.
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 dependent Schrodinger equation, it takes time for the- wave fun
 to evolve from one zero-order state to another and that
 becomes longer as the mixing between the states becomes weake
 adiabatic reactions the mixing is strong enough to ensure tha
 system remains an eigenfunction of the true Hamiltonian at all t
 and follows the pathway of Fig. 1B. In nonadiabatic cases
 mixing can be so weak that there is not enough time spent ir
 curve-crossing region for the wave function to evolve, and
 system continues on the zero-order reactant surface and gets re
 ed back many times before it finally jumps to the other surfac
 that case, ie curve crossing might become rate determining.
 dividing line for ET reactions can be roughly estimated by
 inequalities 4 that compare the matrix element V, which mixe
 two states, with the thermal energy kBT

 adiabatic: V >> kBT; nonadiabatic: V < < kBT

 For the systems to be discussed here, it is usually assumed that
 are nonadiabatic. In that case another possible starting point r
 rate expression is the so-called golden rule (Eq. 5)), which treat
 as radiationless transitions. In this expression, derived from t
 dependent quantum mechanical perturbation theory, the ra
 given as the product of an electronic term, IVl2, and the nu
 coordinates as the Franck-Condon-weighted density of s

 (FCWD).

 k = 2'TTh-llVl2FCT;VD

 Gt = (AGo + AS)2I4As

 kET =A' exp-[(AG° + AS)2/4ASkBT

 (6)

 (7)

 This classic result (26), obtained by Marcus (21), contains a most
 interesting prediction: as the driving force of the reaction increases
 and the free energy becomes more negative, the reaction rate rises to
 a maximum when As = -AG, but then unexpectedly falls offagain.
 The prediction of this so called "inverted region" was one of the
 more startling and controversial results of Marcus' theory. This
 result is independent of whether the reactions are adiabatic or not
 (27). Experimental tests will be discussed below.

 As outlined above, for reactions in the nonadiabatic regime, the
 probability of crossing from reactant to the product surface at the
 activated state is much less than unity and becomes rate limiting. In
 the framework of TST, this corresponds to K being much smaller
 than 1. Using the golden rule (5), Levich (19) obtained Eq. 8 for
 nonadiabatic ET rates, giving the explicit dependence of the prefac-
 tor on V, As, and T. Once again, this has the general form of an
 Arrhenius equation and connects with Marcus theory by substitut-
 ing Gt with Eq. 6.

 tET = (TrlA2AsksT)ll2lvl2 exp(-Gt/kBT)  (8)

 The model discussed so far includes only the reorganization ofthe
 solvent molecules. It can be improved by taking into account bond
 length and angle changes accompanying the addition or removal of
 an electron. One of the simpler models, and the one adopted here,

 As such, Eq. 5 is not very descriptive and a more physical model and
 comparison with TST (Eq. 3) would be helpful. What is the
 meaning of V? In terms of our model, it is approximately equal to
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